MECHANICS (C) UNIT 1

TEST PAPER 6

Take $g = 9.8 \text{ ms}^{-2}$ and give all answers correct to 3 significant figures where necessary.

1. A small box, of mass 0.5 kg, is initially at rest on a horizontal table-top. A horizontal force of magnitude 0.34 N is applied to the box as shown. Modelling the box as a particle, find the acceleration with which the box starts to move if

(i) the contact between the box and the table is smooth,

[2]

(ii) the contact is rough, the coefficient of friction being 0.05.

[3]

2. Two particles A and B, of masses 50 grams and y grams, are moving in the same straight line, in opposite directions, with speeds 7 ms⁻¹ and 4 ms⁻¹ respectively, and collide. Find the value of y in each of the following separate cases:

(i) after impact the particles move together with speed 2.25 ms⁻¹;

[3]

(ii) after impact the particles move in opposite directions with speed 5 ms⁻¹.

[3]

- 3. A particle passes through a point O with speed 9 ms⁻¹ and moves in a straight line with constant acceleration 3.6 ms^{-2} for t seconds until it reaches the point P. The acceleration is then reduced to 2 ms⁻² and this is maintained for another t seconds until the particle passes the point O with speed 16 ms⁻¹. Calculate
 - (i) the time taken by the particle to travel from O to Q,

[4]

(ii) the distance OQ.

[3]

4. A lump of clay, of mass 0.8 kg, is attached to the end A of a light rod AB, which is pivoted at the other end B so that it can rotate smoothly in a vertical plane. A force is applied to A at an angle of 60° to the vertical, as shown, the magnitude FN of this force being just enough to hold the lump of clay in equilibrium with AB inclined at an angle of 30° to the upward vertical. Making suitable modelling assumptions, find

(i) the value of F,

[5]

(ii) the magnitude of the force in the rod AB.

[2]

MECHANICS 1 (C) TEST PAPER 6 Page 2

- 5. A particle P moves in a straight line so that its displacement s metres from a fixed point O at time t seconds is given by the formula $s = t^3 7t^2 + 8t$.
 - (i) Find the values of t when the velocity of P equals zero, and briefly describe what is happening to P at these times.
 - (ii) Find the distance travelled by P between the times t = 3 and t = 5. [3]
 - (iii) Find the value of t when the acceleration of P is -2 ms⁻². Briefly explain the significance of a negative acceleration at this time. [3]

A small stone, of mass 0.2 kg is projected with speed 7 ms^{-1} from P, the bottom of a rough plane inclined at 25° to the horizontal, and moves up a line of greatest slope of the plane until it comes to instantaneous rest at Q, where PQ = 4 m.

(i) Show that the deceleration of the stone as it moves up the plane has magnitude $\frac{49}{8}$ ms⁻².

[2]

(ii) Find the coefficient of friction between the stone and the plane,

[4]

(iii) Find the speed with which the stone returns to P.

[4]

(iv) Name one force which you have ignored in your mathematical model, and state whether the answer to (iii) would be larger or smaller if that force were taken into account. [2]

A particle P, of mass 4 kg, rests on horizontal ground and is attached by a light, inextensible string to another particle Q of mass 4.5 kg. The string passes over a smooth pulley whose centre is 3 m above the ground. Initially Q is 1.1 m below the level of the centre of the pulley. The system is released from rest in this position.

(i) Find the acceleration of the two particles.

[4]

[2]

(ii) Find the speed with which O hits the ground.

Given that, while the string is slack, Q does not rebound from the ground and P does not hit the pulley, find

(iii) the time for which P continues to rise,

[2]

(iv) the speed with which Q leaves the ground when the string again becomes taut.

[4]

MECHANICS 1 (C) TEST PAPER 6: ANSWERS AND MARK SCHEME

1. (i)
$$0.34 = 0.5a$$
 $a = 0.68 \text{ ms}^{-2}$ M1 A1
(ii) $R = 0.5g$ so frictional force $= 0.05R = 0.245 \text{ N}$ M1
Acc. force $= 0.095 \text{ N}$, so $a = 0.19 \text{ ms}^{-2}$ A1 A1

2. (i) Momentum:
$$7 \times 50 - 4y = 2.25(50 + y)$$
 6.25 $y = 237.5$ $y = 38$ M1 A1 A1
(ii) Momentum: $7 \times 50 - 4y = -5 \times 50 + 5y$ 9 $y = 600$ $y = 66\frac{2}{3}$ M1 A1 A1

3. (i) At
$$P$$
, $v = 9 + 3.6t$ At Q , $v = 9 + 3.6t + 2t = 9 + 5.6t$ M1 A1
 $9 + 5.6t = 16$ $5.6t = 7$ $t = 1.25$ O to $Q : 2.5$ s M1 A1
(ii) $\frac{1}{2} \times 1.25 \times (9 + 13.5 + 13.5 + 16) = 32.5$ m M1 A1 A1

4. (i) Resolve:
$$F \sin 60^{\circ} = T \sin 30^{\circ}$$
, $F \cos 60^{\circ} + T \cos 30^{\circ} = 0.8g$ M1 A1 A1
Hence $F\sqrt{3} = T$, $F + T\sqrt{3} = 1.6g$ $4F = 1.6g$ $F = 3.92$ N M1 A1
(ii) $T = 3.92\sqrt{3} = 6.79$ N M1 A1

5. (i)
$$v = 3t^2 - 14t + 8 = (3t - 2)(t - 4)$$
 $v = 0$: $t = \frac{2}{3}$, $t = 4$ M1 A1 M1 A1

P is turning round (changing direction)

A1

(ii) $s(3) = -12$, $s(4) = -16$, $s(5) = -10$, so dist = 4 + 6 = 10 m M1 A1 A1

(iii) $a = 6t - 14$ $a = -2$ when $t = 2$ M1 A1

Negative acceleration acting on negative velocity, so speeding up B1

6. (i)
$$0 = 7^2 - 2a(4)$$
 $a = \frac{49}{8} \text{ ms}^{-2}$ M1 A1
(ii) Acc down plane = $g \sin 25^\circ + \mu g \cos 25^\circ = 9.8(\sin 25^\circ + \mu \cos 25^\circ)$ M1 A1
Hence $\sin 25^\circ + \mu \cos 25^\circ = 0.625$ $\mu = 0.223$ M1 A1
(iii) Now down plane, acc. = $g \sin 25^\circ - \mu g \cos 25^\circ = 0.220g$ M1 A1
 $v^2 = 0 + 2(4)(0.220g) = 17.27$ $v = 4.16 \text{ ms}^{-1}$ M1 A1

Α1

12

7. (i)
$$4.5g - T = 4.5a$$
, $T - 4g = 4a$ B1 B1
Add: $0.5g = 8.5a$ $a = 0.576 \text{ ms}^{-2}$ M1 A1
(ii) $v^2 = 2as = 2(0.576)(1.9) = 2.191$ $v = 1.48 \text{ ms}^{-1}$ M1 A1
(iii) Under gravity P rises for t s where $0 = 1.48 - 9.8t$ $t = 0.151$ M1 A1
(iv) P returns to 1.9 m above ground with speed 1.48 ms^{-1} B1
Momentum conserved: $4(1.48) + 4.5(0) = 8.5v$ M1 A1

 $v = 0.697 \text{ ms}^{-1}$